Álgebra Lineal

Maestría en Ciencias Matemáticas

1. Resuelva el siguiente sistema usando la factorización LU o P^TLU (según sea el caso).

$$\left\{ \begin{array}{l} x-y+z=1\\ x-y-z=-3\\ 2x-y-z=-1 \end{array} \right.$$

2. Calcule ${\cal A}^{-1}$ usando el algoritmo de Gauss-Jordan:

$$A = \left(\begin{array}{ccc} 0 & 1 & 1\\ 1 & -3 & -2\\ 2 & -2 & 1 \end{array}\right)$$

3. Halla el valor de t para el cual el siguiente sistema

$$\begin{cases} x + y + 2z = 1 \\ 4x - 2ty + 5z = 2 \\ x - y + tz = -1 \end{cases}$$

- (a) tiene solución única y resuelve el sistema para esos valores de t.
- (b) tiene infinidad de soluciones.
- (c) no tiene solución.

4. Suponga que A y B son matrices de $n \times n$ en un campo K. Demuestra que

$$\left[\left(\lambda A B \right)^{-1} \right]^T = \lambda^{-1} \left(A^T \right)^{-1} \left(B^T \right)^{-1}.$$

- 5. Sea V un K-espacio vectorial y sean $\{v_1, \ldots, v_n\}$ vectores de V. Demuestra que el subespacio generado por estos vectores es el menor de todos los subespacios de V que contienen a éstos.
- 6. Sea $A \in M_n(K)$ y sea $b \in M_{n \times 1}(K)$. Demuestra que si A es una matriz invertible, entonces el sistema Ax = b tiene solución y además, ésta es única.
- 7. Determine si el conjunto $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \text{ tales que } x \geq y \right\}$ es un subespacio vectorial de \mathbb{R}^2 con la suma y el producto por escalar usuales.

1

8. Sea W el conjunto de todos los $(x_1, x_2, x_3, x_4, x_5)$ de \mathbb{R}^5 que satisfacen

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$
$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$
$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0$$

Encontrar un conjunto finito de vectores que genera a W.

- 9. Sea $\{v_1, \ldots, v_n\}$ un conjunto linealmente independiente de un K-espacio vectorial V y c_1, \ldots, c_n escalares distintos de cero fijos de K. Pruebe que $\{c_1v_1, \ldots, c_nv_n\}$ es un conjunto linealmente independiente de V.
- 10. Demostrar que un subespacio de \mathbb{R}^2 es \mathbb{R}^2 o el subespacio nulo o consta de todos los múltiplos escalares de algún vector fijo de \mathbb{R}^2 .
- 11. Sea $V = \mathbb{R}[t]_2$ el espacio de todos los polinomios en la variable t con coeficientes reales de grado menor o igual a 2.
 - (a) Encuentre el vector de coordenadas de $p(x) = 2 t + 3t^2$ con respecto a la base $\beta = \{1 + t, 1 t, t^2\}$.
 - (b) Extienda el conjunto linealmente independiente $\{1+t, 1+t+t^2\}$.
- 12. Suponga que V es un espacio vectorial con base $\{x_1, x_2, x_3\}$. Demuestre que $\{x_1 + x_2 + x_3, x_2 + x_3, x_3\}$ también es una base para V.
- 13. Se
a ${\cal V}$ un espacio vectorial sobre el campo
 ${\cal K}$ y suponga que ${\cal X}, {\cal Y}$ son subconjuntos de
 ${\cal V}.$ Demuestre lo siguiente:
 - (a) Si $X \subset Y$ entonces $\langle X \rangle \subset \langle Y \rangle$.
 - (b) Si $X \subset \langle Y \rangle$ entonces $\langle X \rangle \subset \langle Y \rangle$.

Donde $\langle A \rangle$ denota el espacio generado por A.

14. Encontrar y describir el mayor número posible de vectores linealmente independientes de los siguientes vectores:

$$v_{1} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, v_{2} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, v_{3} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, v_{4} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, v_{5} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, v_{6} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$

15. Considere el espacio vectorial \mathbb{R}^3 sobre \mathbb{R} . Si $V' \subseteq \mathbb{R}^3$ es una línea que pasa por el origen y $V'' \subseteq \mathbb{R}^3$ es un plano que pasa através del origen pero no contiene a V', muestra que $V' \oplus V'' = \mathbb{R}^3$.

2

16. Halla la dimensión del siguiente subespacio de \mathbb{R}^4

$$S_2 = \left\{ \begin{pmatrix} a+b-2c \\ a+b-2c+d \\ -2a+2b+4c-d \\ b+d \end{pmatrix} \middle| a,b,c,d \in \mathbb{R} \right\}.$$

17. Determinar todos los $k \in \mathbb{R}$ para los cuales

$$\left\langle \left(\begin{array}{c} -2\\1\\6 \end{array} \right), \left(\begin{array}{c} 3\\0\\-8 \end{array} \right) \right\rangle = \left\langle \left(\begin{array}{c} 1\\k\\2k \end{array} \right), \left(\begin{array}{c} -1\\-1\\k^2-2 \end{array} \right), \left(\begin{array}{c} 1\\1\\k \end{array} \right) \right\rangle.$$

- 18. Suponga que $\{v_1, v_2, \dots, v_n\}$ es una base para \mathbb{R}^n . Muestra que si A es una matriz invertible de $n \times n$, entonces $\{Av_1, Av_2, \dots, Av_n\}$ es también una base para \mathbb{R}^n .
- 19. Sea $\beta = \{v_1, v_2, \dots, v_n\}$ una base para un espacio vectorial V y sean u_1, \dots, u_k vectores en V. Si $\{u_1, u_2, \dots, u_k\}$ es linealmente independiente sobre V, demuestra que $\{[u_1]_{\beta}, [u_2]_{\beta}, \dots, [u_k]_{\beta}\}$ es linealmente independiente sobre \mathbb{R}^n .
- 20. Suponga $\{u_1, u_2, u_3\}$ es linealmente independiente, y que $\{u_1, u_2, u_3, u_4\}$ es linealmente dependiente. Muestra que $u_4 \in \langle u_1, u_2, u_3 \rangle$.
- 21. Los vectores $v_1 = (1,2,3)^t, v_2 = (2,5,3)^t, v_3 = (1,0,10)^t$ forman una base para \mathbb{R}^3 . Si $T: \mathbb{R}^3 \to \mathbb{R}^2$ es la transformacin lineal definida por

$$T(v_1) = (1,0)^t, T(v_2) = (1,0)^t, T(v_3) = (0,1)^t,$$

halla T(v), donde v = (1, 1, 1).

22. Sea $V = \mathbb{R}^{2\times 2}$ y $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ es la base canónica para V. Defina los mapeos $S, T: V \to V$ de la siguiente manera

$$T(A) = \frac{1}{2}(A - A^t), S(A) = \frac{1}{2}(A + A^t).$$

- (a) Prueba que S y T son lineales.
- (b) Halla $[S]_{\beta}$ y $[T]_{\beta}$.
- (c) Encuentra bases para Ker(S) y Im(S), Ker(T) y Im(T).
- (d) Prueba que $S \circ S = S$ y $T \circ T = T$.
- (e) Pruebe que $S \circ T = 0$ y $T \circ S = 0$.
- (f) Pruebe que $S + T = I_V$.
- 23. Sean $T: U \to V$ y $S: V \to W$ dos transformaciones lineales. Probar que
 - (a) rango $(S \circ T) \leq \text{rango}(S)$. (Sugerencia: Demuestra que $\text{Im}(S \circ T) \subseteq \text{Im}(S)$.)
 - (b) $\operatorname{rango}(S \circ T) \leq \operatorname{rango}(T)$. (Sugerencia: Demuestra que $\operatorname{Ker}(S \circ T) \subseteq \operatorname{Ker}(S)$.)

- (c) Si T es suprayectiva, entonces rango $(S \circ T) = \text{rango}(S)$.
- (d) Si S es inyectiva, entonces $\operatorname{rango}(S \circ T) = \operatorname{rango}(T)$.
- 24. Sean u_1, u_2, u_3 una base para \mathbb{R}^3 y sean v_1, v_2, v_3 cualesquiera vectores de \mathbb{R}^3 . Si T es un operador lineal tal que $T(u_i) = v_i$ para i = 1, 2, 3. Muestra que $T = T_A$, donde A es la matriz de 3×3

$$A = [v_1|v_2|v_3][u_1|u_2|u_3]^{-1}.$$

- 25. La función $T:V\to W$ es tal que $[T]_{\beta\beta'}=\begin{pmatrix}2&3\\2&5\end{pmatrix}$ donde β y β' son bases de V y W respectivamente. ¿Es T invertible?
- 26. Considere al conjunto de los números complejos \mathbb{C} como un espacio vectorial sobre \mathbb{R} , el campo de los números naturales.
 - (a) Demuestre que $\beta = \{1, i\}$ es una base para \mathbb{C} .
 - (b) Si $T: \mathbb{C} \to \mathbb{C}$ es la transformación lineal dada por T(a+bi) = a-bi, determine $[T]_{\beta}$.
- 27. Considere las funciones proyección sobre \mathbb{R}^n dadas por

$$\pi_i \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_i.$$

Demuestre que $\beta = \{\pi_1, \pi_2, \dots, \pi_n\}$ es una base de $L(\mathbb{R}^n, \mathbb{R})$.

28. Sea V un espacio vectorial de dimensión 2 y sea $\beta=\{v_1,v_2\}$ una base para V. Sea $T:V\to V$ un operador lineal tal que

$$[T]_{\beta} = \left(\begin{array}{cc} 4 & 7 \\ 6 & -2 \end{array}\right).$$

Si $[T]_{\beta} = P \begin{pmatrix} -10 & -14 \\ 5 & 12 \end{pmatrix} P^{-1}$, donde $P = \begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}$, determine una base β' para V de tal manera que $[T]_{\beta'} = \begin{pmatrix} -10 & -14 \\ 1 & 4 \end{pmatrix}$. (Observe que la base β' debe estar en términos de v_1 y v_2).

29. Sea V un espacio vectorial, $S, T, U \subset V$ subespacios, y supongamos que

$$S \cap T = S \cap U$$
, $S + T = S + U$, $\forall T \in U$.

Muestre que T=U. ¿Puede alcanzarse la solución si se elimina alguna de las tres hipótesis?

- 30. Sea V un espacio vectorial de dimensión finita y sea $T:V\to V$ un mapeo lineal. Demuestre que las siguientes condiciones son equivalentes:
 - (a) $\ker T \cap \operatorname{Im} T = \{0\}.$
 - (b) Para todo $v \in V$, T(T(v)) = 0 se tiene que T(v) = 0.

- 31. Halla los valores propios, subespacios propios, multiplicidades geométricas y algebraicas de la matriz identidad de 3×3 .
- 32. Considere la matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

- (a) Determina el polinomio característico de A.
- (b) Determina los valores propios de A y sus multiplicidades algebraicas.
- (c) Determina los espacios propios asociados a cada valor propio de A y sus multiplicidades geometricas.
- (d) ¿Es A diagonalizable? Justifique su respuesta.
- 33. Una matriz A es idempotente si $A^2 = A$. Demuestra que los únicos valores propios posibles de una matriz idempotente son $\lambda = 0$ y $\lambda = 1$.
- 34. Sea M una matriz de tamaño $n \times n$ y sean $\lambda_1, \lambda_2, \ldots, \lambda_m$ distintos autovalores de M con sus correspondientes autovectores v_1, v_2, \ldots, v_m . Demuestre que $\{v_1, v_2, \ldots, v_m\}$ es un conjunto linealmente independiente.
- 35. Suponga que A es una matriz de 2×2 con polinomio característico $\chi_A(X) = X^2 + aX + b$. Demuestre que

$$A^3 = (a^2 - b)A + abI_n$$

- ¿Puede hallar una fórmula (en términos de A) para calcular A^{-1} ? (Sugerencia: Para obtener la fórmula para A^{-1} debe poner condiciones extras a b.)
- 36. Sea V un espacio vectorial sobre \mathbb{K} , $\dim(V) = n < +\infty$, sea $T \in \operatorname{Hom}(V, V)$ y sean $\alpha, \beta \in \mathbb{K}$. Demuestre que

$$\operatorname{Spec}(\alpha T + \beta I) = \alpha \operatorname{Spec}(T) + \beta.$$

- 37. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ el operador lineal dado por T(x, y, z) = (y z, x + z, y x).
 - (a) Demuestra que T es invertible.
 - (b) Encuentre el polinomio característico de ${\cal T}.$
 - (c) Halle los valores propios de T.