

Maestría en Ciencias Matemáticas Examen de Admisión 2016 Álgebra Lineal

3.7 1			
Nombre:			

1. (10 puntos) Determine las condiciones necesarias y suficientes que deben cumplir b_1, b_2 y b_3 para que el sistema

$$x + 2y + 7z = b_1$$
$$-x + y - z = b_2$$
$$3x - 2y + 5z = b_3$$

tenga solución.

- 2. (10 puntos) Sea $T: V \to W$ una transformación lineal. Suponga que $\{v_1, \ldots, v_s, v_{s+1}, \ldots, v_r\} \subseteq V$ es un conjunto de vectores linealmente independiente tal que $\{v_1, \ldots, v_s\}$ es una base para $\ker(T)$. Pruebe que $\{T(v_{s+1}), \ldots, T(v_r)\}$ es linealmente independiente.
- 3. (10 puntos) Sean $\beta = \{v_1, v_2, v_3\}$ y $\beta' = \{w_1, w_2\}$ bases para los espacios vectoriales reales V y W, respectivamente; sea $T: V \to W$ la única transformación lineal tal que $Tv_1 = -w_1 + w_2$, $Tv_2 = w_1 w_2$ y $Tv_3 = -w_1 + w_2$. Encuentre bases para el núcleo y la imagen de T.
- 4. (10 puntos) Sea $\mathbb{R}[t]_2$ el espacio vectorial real de polinomios de grado menor o igual a uno. Considere la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}[t]_2$ dada por $T \begin{pmatrix} a \\ b \end{pmatrix} = (a+2b) + (3a+5b)t$. Encuentre una base β para \mathbb{R}^2 de tal manera que la matriz de T respecto de las bases β y $\beta' = \{1+t,t\}$ sea $\begin{pmatrix} 8 & 13 \\ 13 & 21 \end{pmatrix}$.
- 5. (10 puntos) Sea $\mathbb{R}[t]_4$ el espacio vectorial real de polinomios de grado menor o igual a tres y p'(t) la derivada de p(t). Sea $L: \mathbb{R}[t]_4 \to \mathbb{R}[t]_4$ dado por L(p(t)) = p(t) + p(1)(t-3) 2p'(1)(t-1). Halla
 - a) los valores propios de L y sus multiplicidades (algebraicas),
 - b) los espacios propios de L.
 - c) ¿es L diagonalizable?

(Sugerencia: toma como una base para $\mathbb{R}[t]_4$ al conjunto $\{(t-1)^3, (t-1)^2, (t-1), 1\}$).