
Calibración débil en paralelo a partir de una secuencia de imágenes.

LCC. Ariel Antonio Briceño Coronado. aranbrico@gmail.com

Maestría en Ciencias Matemáticas. Facultad de Matemáticas Universidad Autónoma de Yucatán 2008

Declaración.

En cumplimiento de uno de los requisitos para la titulación en la Maestría en Matemáticas de la Universidad Autónoma de Yucatán, dirijo el presente documento como tesis de Maestría para obtener el grado de Maestro en Ciencias Matemáticas.

Declaro que esta tesis fue realizada enteramente por mi y describe mi propio trabajo de investigación con excepción de las partes que así se indiquen.

LCC. Ariel Antonio Briceño Coronado Mérida, Yucatán México 1 de Abril de 2008.

Agradecimientos.

- A Dios, por darme la vida.
- A mi familia, por ayudarme a vivir y enseñarme las cosas buenas de la vida. Gracias también por soportarme.
- A todos los compañeros de mi vida estudiantil, porque pasé gratos momentos con ellos.
- A mi asesor, el Dr. Arturo Espinosa Romero, por ayudarme con su amistad, experiencia y apoyo para el desarrollo de esta tesis. Es un amigo al que estimo mucho y siempre atento a sus enseñanzas.
- Al Dr. Ricardo Legarda Sáenz, por asesorarme en el desarrollo de esta tesis. Durante el tiempo que estuve trabajando con él, fue pasando de ser profesor a ser un amigo cuyos comentarios son siempre valorados.
- Al Dr. Luis Alberto Muñoz Ubando, porque con su amistad mi interés se enfocó al área de visión computacional.
- A los Doctores mencionados un especial agradecimiento porque con su llegada a FMAT no tuve la necesidad de ir lejos de mi lugar de origen para tener excelentes profesores y amigos que me ayudaron a conocer los principios de procesamiento de imágenes y visión computacional
- A la Facultad de Matemáticas de la Universidad Autónoma de Yucatán, porque en su laboratorio LI^2CoViR se desarrolló la mayor parte de esta tesis.
- A todas las personas que con sus recomendaciones, hicieron que la elaboración de esta tesis, se terminara satisfactoriamente.

El trabajo desarrollado en esta tesis fue apoyado por una beca para asistente de investigación del proyecto CONACYT clave "SEP-2004-C01-47893", cuyo responsable técnico es el Dr. Arturo Espinosa Romero.

Resumen.

El objetivo principal de esta tesis es conocer las ventajas del enfoque de algoritmos paralelos en visión tridimensional, que usualmente se plantean como procedimientos secuenciales. El documento presenta un estudio acerca de la paralelización de algoritmos de calibración débil de imágenes, usando una secuencia de 2 o más imágenes.

Para cada etapa en el proceso de calibración, se analiza las oportunidades de paralelización, se muestran los algoritmos secuenciales, los paralelos y se presentan también los resultados de las implementaciones así como las mejoras que se alcanzaron y proporciona una idea clara de lo que se puede lograr con un enfoque de paralelización en aprovechamiento de la computadoras actuales las cuales tienen más de dos núcleos de procesamiento.

El proceso que se describe a lo largo de este documento tiene un enfoque modular, *i.e.*, se pueden cambiar de acuerdo a necesidades, cualquier etapa en el proceso de calibración. Gracias al enfoque modular se tuvo la posibilidad de analizar cada etapa para conocer el comportamiento de los algoritmos paralelos en la arquitectura en la cual se implementaron.

Podemos resumir las fases del proceso de calibración desarrollado en este trabajo en tres etapas principales: detección de esquinas, correspondencia entre las imágenes y depuración de las correspondencias. Cada una de las etapas se describe de manera independiente, pero siempre manteniéndolas dentro del contexto del objetivo central.

Los resultados mostraron mejoras en el rendimiento con la paralelización de los algoritmos implementados y las gráficas en los capítulos desde el 3 hasta el 6 lo demuestran.

Índice general

De	eclar	ación.					III
A	grade	ecimier	ntos.				V
R	esum	en.					VII
Ín	dice	de figu	ıras				XIV
Ín	dice	de cua	dros				XV
Li	sta d	e algo	ritmos				XVII
1.	Intr	oducci	ón.				1
	1.1.	Motiva	ación del trabajo				2
	1.2.	Objeti	vo de la tesis.				2
	1.3.	Traba	jo relacionado.				4
	1.4.	Meto	dología				9
	1.5.	Acerca	de la computadora paralela				10
	1.6.	Descri	pción del documento.				10
2.	Fun	damen	tos.				13
	2.1.	Model	os de computadoras				14
		2.1.1.	Modelo de máquina secuencial				14
		2.1.2.	Modelos de computadoras paralelas				14
		2.1.3.	Clasificación de computadoras paralelas				17
	2.2.	Lengu	ajes de programación paralela				19
	2.3.	¿Cómo	evaluar los algoritmos paralelos?				20
	2.4.	Visión	geométrica				22
		2.4.1.	Geometría epipolar				22
		2.4.2.	Matriz fundamental				23
		2.4.3.	Estimación de la matriz fundamental.				24

3.		ector de esquinas KLT.	27
	3.1.		28
		3.1.1. Algoritmo secuencial KLT.	29
		3.1.2. Algoritmo paralelo KLT	29
	3.2.	Experimentos.	32
	3.3.	Discusión de resultados	38
4.		respondencia entre imágenes.	41
	4.1.	Establecimiento del problema de correspondencia	41
		4.1.1. Modelos de deformación local	42
		4.1.2. Transformación de los valores de intensidad	43
		4.1.3. Criterio de Suma de Diferencias Cuadradas, SSD	44
		4.1.4. Criterio de Correlación Cruzada de media Cero Normalizada, ZNCC	45
	4.2.	Algoritmo de correspondencias	46
		4.2.1. Algoritmo secuencial de correspondencia	46
		4.2.2. Algoritmo paralelo de correspondencias	49
	4.3.	Experimentos	49
	4.4.	Discusión de resultados	53
5 .	Esti	mación robusta RANSAC.	55
	5.1.	RANSAC.	56
		5.1.1. Distancia umbral al modelo	57
		5.1.2. Número de muestras	57
		5.1.3. Tamaño suficiente del conjunto consenso.	57
		5.1.4. Determinación del número de muestras adaptativamente	58
	5.2.	Paralelización del RANSAC	58
		5.2.1. Análisis de Paralelización	59
	5.3.	Estimación de la matriz fundamental.	61
	5.4.	Experimentos	61
		5.4.1. Experimentos con datos sintéticos	61
	5.5.	Experimento con datos reales	63
	5.6.	Discusión de resultados	68
6.	Alg	oritmo de calibración paralelo.	71
	6.1.	Secuencia ordenada de las etapas de calibración	71
	6.2.	Algoritmo alternativo de calibración paralela	72
		6.2.1. Formación de los grupos	74
		6.2.2. Flujo de las imágenes.	75
		6.2.3. Pruebas de calibración usando grupos de procesos	75
	6.3.	Discusión de resultados.	78
7.	${ m Res}$	umen y conclusiones.	83
	7 1	Resumen	85

A. Mo	odelo de la cámara.	85
A.1	1. Modelo simple	85
A.2	2. Calibración intrínseca	87
A.3	3. Matriz de proyección	87
B. Vis	sión geométrica.	89
B.1	1. Conceptos preliminares.	89
B.2	2. Medidas de distancias a la matriz fundamental	90
	B.2.1. Distancia de Sampson	90
	B.2.2. Distancia epipolar simétrica	91
Biblic	ografía	92

Índice de figuras

1.1.	Descripción esquemática del servicio de reconstrucción 3D instalado por EPOCH	8
2.1. 2.2. 2.3. 2.4.	Modelo de computadora de Von Neumann	15 16 17 23
3.1. 3.2. 3.3. 3.4. 3.5. 3.6.	División de una imagen para el uso del detector de esquinas paralelo KLT Gráficas de tiempos con el algoritmo paralelo KLT Rapidez alcanzada del algoritmo paralelo KLT Eficiencia del algoritmo paralelo KLT Costo en el algoritmo paralelo KLT Esquinas encontradas con KLT	30 34 35 36 37 38
4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	Deformación traslacional y afín. Ejemplo de regiones W y Ω para SSD ó ZNCC Ejemplos del uso de SSD y ZNCC . Tiempos de asignación de correspondencias Rapidez del algoritmo de correspondencia Eficiencia del algoritmo de correspondencia Costo implicado en el algoritmo paralelo de correspondencia .	42 47 48 51 52 53 54
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	Datos sintéticos de prueba para RANSAC	62 64 65 66 68 69 70
6.1. 6.2. 6.3. 6.4.	Análisis de calibración en conjuntos de imágenes	73 74 77 78

6.5.	Proceso de calibración	79
6.6.	Análisis de calibración en conjuntos de imágenes	8
A.1.	Hombre dibujando un Lute	85
A.2.	Proyección perspectiva	86
A.3.	Aplicación de los parámetros internos	88

Índice de cuadros

3.1.	Tiempos del algoritmo paralelo KLT	33
3.2.	Rapidez alcanzada en la ejecución paralela del KLT	35
3.3.	Eficiencia del algoritmo paralelo KLT	37
3.4.	Costo implicado en el algoritmo paralelo KLT	38
4.1.	Tiempos de la ejecución de asignación de correspondencias	50
4.2.	Rapidez del algoritmo de correspondencia	51
4.3.	Eficiencia obtenida con el algoritmo paralelo de correspondencias	52
4.4.	Costo implicado en el algoritmo paralelo de correspondencias	53
5.1.	Tiempos del algoritmo paralelo RANSAC	65
5.2.	Rapidez del algoritmo paralelo RANSAC	66
5.3.	Eficiencia derivada del algoritmo paralelo RANSAC	67
5.4.	Costo implicado en el algoritmo paralelo RANSAC	68
6.1.	Comparación de tiempos entre dos algoritmos de calibración	77

Lista de Algoritmos

2.1.	Algoritmo de los 8 puntos normalizados	25
3.1.	Algoritmo secuencial del detector de esquinas KLT	29
3.2.	Algoritmo paralelo del detector de esquinas KLT	32
4.1.	Asignación de correspondencias a partir del mapa de valores	47
4.2.	Algoritmo de asignación de correspondencias a partir un par de listas de	
	esquinas	48
4.3.	Algoritmo distribuido de asignación de correspondencias	49
5.1.	Algoritmo de estimación robusta RANSAC	56
5.2.	Cálculo adaptativo de las iteraciones de RANSAC	58
5.3.	Algoritmo de estimación robusta RANSAC con cálculo adaptativo de las	
	iteraciones N	59
5.4.	Algoritmo paralelo RANSAC en una máquina con memoria distribuida .	60
6.1.	Algoritmo de calibración	72
6.2.	Algoritmo de calibración empleando grupos de procesos	76