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Chapter 1

INTRODUCTION

1.1 Special values of classical zeta

The Riemann zeta function is defined by

Gols) =Y n*= [ 0=p)7",

n=1 p prime
where s € C with Rs > 1. We can analytically continue (g(s) to a meromorphic
function on C with a pole of order 1 and residue 1 at 1. There is a rich special values
theory associated to (gp(s), which is intimately connected to Bernoulli numbers, B,,.

If n > 0 we have

Bn+1

Co(=n) =1

Consequently, if n > 1, {g(—2n) = 0. Such zeros are called trivial zeros and they

are simple zeros. With respect to the non-trivial zeros, the well known Riemann

1

hypothesis says that the non-trivial zeros of (g(s) lie on the line s =

[\

All the zeros found so far have turned out to be simple zeros, so nowadays sim-
plicity of zeros is also conjectured. The Riemann Hypothesis has many interesting
consequences, e.g., in the distribution of primes. For m = 2k, k£ > 0 an integer we

have Euler’s Theorem

By, (2mi)™
2(m!)

There is no simple formula for (g(2k + 1) analogous to the previous one. It is not

Co(m) = —

known whether (g(2k + 1) is rational or irrational, except for & = 1 when it is

irrational. Also, divisibilities of B,, by primes p are closely related to information



on components of the ideal class group of cyclotomic extensions Q(s,), where f,, is a
primitive pth root of unity. For example, see Herbrand-Ribet Theorem in [Was97].

More generally the Dedekind zeta function (i of a number field K (a finite exten-
sion of Q) is defined, for s € C with Rs > 1, by

G(s) = YN = [0 - NP) )

P

where the sum is taken over all non-zero ideals of Ok (ring of integers of K/7Z). Here
N(Z) = |Ok/Z| is the norm of the ideal Z, and P runs through the prime ideals P
of Ok. Notice that for K = Q, (x = (g since N(nZ) = |Z/nZ| = n. This function
has a simple functional equation connecting (x(s) to (x(1 — s). Let r; the number
of embeddings of K in R and ry half the number of non-real embeddings of K in C.
For s > 1, it is clear that there are no zeros and hence analyzing the poles of the
gamma, factors in the functional equation, we can see that, at negative integers, the
zeta function vanish to order ry 4 ro (9 respectively), if s is even (odd). In addition,
for s a positive even integer, (x(s)/(2mi)"* € Q, if K is totally real. Furthermore,

we have the analytic class number formula,

2r1+r2 T2
lim (s — 1)(k(s) = —WRh,

= /1]

where h, D, and R denote the class number, the discriminant, and the regulator of
the number field K, and m is the number of roots of unity contained in K.
In general, orders of vanishing and special (leading) values encode a lot of inter-

esting arithmetic information.

1.2 Two kinds of zeta in function fields

For a function field K over the finite field of constants F,, ¢ = p", we describe the

Artin-Weil zeta function. For a divisor D, we put



